Technologies For Exporting Electricity of 100 kWh/T of Clean Cane While Producing White Sugar

A SUCCESS STORY

Speaker: Anurag Goyal
ISGEC Heavy Engineering Ltd, India

At: 29th ISSCT, 7 Dec 2016, Chiang Mai, Thailand
AUTHORS

Hasan Mushrif
Chairman & Managing Director

Mahesh P Joshi
General Manager

Milind P Chavan
Production manager
Sar Senapati Santaji Ghorpade Sugar Factory, India

Anurag Goyal
Isgec Heavy Engineering Limited, India
Email id: goyalsap08@gmail.com
OBJECTIVE

To set up a green field integrated sugar complex with eco-friendly plant configuration and zero liquid discharge for sustainable socio-economic development of rural area for:

- Production of plantation white sugar with high process efficiencies
- Fuel grade ethanol with zero liquid discharge.
- High milling efficiency RME>96.5%,
- Low power consumption of i.e. <33.5 kW/T of cane, including sugar, co-gen, distillery.
- Minimum process steam consumption to achieve surplus power of minimum 100 kW/t cane for export.
CHALLENGES

• The Indian regulations require that a new sugar plant has minimum aerial distance of 15 kM. from any of the existing sugar plants.

• The land area available with us was on hill terrain and could not accommodate the entire complex on a single hillock. We had to split the plant on two adjacent hillocks with an elevation difference of 40 m and horizontal distance of 500 m.

• This was a challenge for us. But after discussion with our engineering team, it was decided to put Mill on lower hillock and rest of plant at the upper hillock.
PLANT VIEW

- Process plant
- Cogen plant
- Mill section
- 40 meter elevation difference
OVERVIEW OF PROJECT

<table>
<thead>
<tr>
<th>Project Promoter</th>
<th>Sar Senapati Santaji Ghorpade Sugar Factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar plant capacity</td>
<td>3500 tcd, expandable to 5000 tcd</td>
</tr>
<tr>
<td>Process</td>
<td>Double sulphitation</td>
</tr>
<tr>
<td>Process steam consumption</td>
<td>Less than 32% on cane</td>
</tr>
<tr>
<td>Co-gen plant capacity</td>
<td>• 120 t/h, 110 bar, 540°C boiler</td>
</tr>
<tr>
<td></td>
<td>• 23 MW triple extraction cum condensing turbo generator</td>
</tr>
<tr>
<td>Distillery Plant</td>
<td>35 kL/day with Zero liquid Discharge</td>
</tr>
<tr>
<td>Distillery boiler</td>
<td>10 t/h, slop incineration boiler</td>
</tr>
<tr>
<td>Sugar Complex power cons.</td>
<td>33.5 kW/t of cane</td>
</tr>
</tbody>
</table>
METHODOLOGY: SELECTION OF MILL

- Minimum no. of cane preparatory devices with high PI > 89
- Low speed milling achieve high RME > 96.5 @ low power consume.
- Use of planetary gear boxes to minimise transmission losses

Higher efficiency with less power cons.
• Juice extraction section consumes 50% of total power and hence require greater attention for selection of mill configuration.

• Two stage cane preparation i.e. cane cutter & heavy duty fiberizor, with energy-efficient flux-compensated magnetic-amplifier rotor starters selected to achieve higher P.I. (89+) at lower power.

• Low-speed milling (12.0 m/min roller speed) comprising 4 mills of size 915 mm x 1980 mm (36”x78”), each mill with toothed roller pressure feeder, foot-mounted planetary gear box and AC VFD drive, selected to achieve higher Reduced mill extraction > 96.50% & at lower power consumption (12 kW/T of cane)
3D VIEW OF THE MILL AT OUR PLANT
SITE PHOTOGRAPH OF MILLING TANDEM
TREND: STEAM CONSUMPTION

In 1980’s: 55% on cane
In 2000’s: 50% on cane
Present: 35-37% on cane
Our Target: 32% on cane
METHODOLOGY : STEAM SAVING IN PROCESS HOUSE

Eliminating the use of live steam

- Heat recovery of SO2 gas for sulphur melting
- Use of high temperature condensate for sugar wash in high grade C/f
- Use of non condensable in online molasses conditioners
STEAM SAVING IN PROCESS
HOUSE SULPHUR MELTING

• Sulphur got melted at 140°C temperature and about 0.3-0.5 % live steam (7 bar pressure) is used for sulphur melting

• Sulphur burning is exothermic reaction and liberate 9726 kJ/kg energy. This thermal energy is used in small re-boiler to generate steam, which is utilize for sulphur melting.

• About 1.3 kW/Ton of cane extra power can be generate, to avoid 0.5 % live steam for sulphur melting through waste heat recovery system.
STEAM SAVING IN PROCESS
HOUSE SULPHUR MELTING
Earlier Live steam at 150°C was used for molasses conditioning, that lead to caramalisation of sugar and higher colour load in process house.

Now 3rd effect vapour (100°C) is used in specially designed on line conditioners, which eliminates live steam consumption.
METHODOLOGY: STEAM SAVING IN PROCESS HOUSE

Selection of equipment to suit extensive vapour bleeding:
- Quintuple evaporator system
- Heat recovery of LP exhaust condensate
- Use of direct-contact juice heaters
- Use of a condensate flash heat recovery system
- Use of continuous pan
METHODOLOGY: QUINTUPLE CONFIGURATION

- Quintuple configuration evaporator is selected with 1st and 2nd effect as long tube evaporator and rest are down take less Robert’s type evaporator.

- Maximum vapour bleeding from V2, V3 & V4 vapours, to reduce steam consumption at 1st effect.

- Long tube evaporator for 1st and 2nd effect, to achieve lower ΔT so that higher vapour temperature of 2nd/3rd effect is maintained at more than 1000C for pan boiling.
METHODOLOGY: QUINTUPLE CONFIGURATION
QUINTUPLE CONFIGURATION: VAPOUR BLEEDING PATTERN

1st Effect
S.K.
(2800 m²)
CJ-II
heating

2nd Effect
FFE
(3000 m²)
CJ-I
heating
SJ-II
heating

3rd Effect
Robert’s
(1200 m²)
SJ-II
heating
‘A’ & ‘C’
Pan boiling
‘A’ & ‘C’
Grain boiling
Melter
+ Molasses conditioner

4th Effect
Robert’s
(600 m²)
RJ-II
heating

5th Effect
Robert’s
(600 m²)
RJ-1st
heating
Condenser

Pan washing

1st Effect
S.K.
(2800 m²)
CJ-II
heating

2nd Effect
FFE
(3000 m²)
CJ-I
heating
SJ-II
heating

3rd Effect
Robert’s
(1200 m²)
SJ-II
heating
‘A’ & ‘C’
Pan boiling
‘A’ & ‘C’
Grain boiling
Melter
+ Molasses conditioner

4th Effect
Robert’s
(600 m²)
RJ-II
heating

5th Effect
Robert’s
(600 m²)
RJ-1st
heating
Condenser

Pan washing
PRESSURE AND TEMPERATURE PROFILE AT EVAPORATOR

Temperature (degC) vs Pressure (kPA)

- LP steam
- V1
- V2
- V3
- V4
- V5

- Pressure values: 250.3, 199.6, 151.2, 105.2, 61.4, 20
- Temperature values: 128.2, 119.6, 112.1, 100.3, 87.2, 61.3

Graph showing the relationship between pressure and temperature at different points along the evaporator.
STEAM SAVING IN PROCESS HEAT RECOVERY OF LP CONDENSATE

- Normally, LP exhaust condensate at 120°C is pumped to boiler feed water tank where it flashes in atmosphere through a vent, thereby cooled down to 100°C.

- This condensate is again pumped to a de-aerator, where LP steam is used to heat the feed water to 118-120°C.

- Extra D.M. water is required to maintain vented out vapour deficiency.
In this plant, New system is adopted: Pumping of LP exhaust condensate directly to a de-aerator at 120°C. The following are the major savings/benefits observed:

- **Saving of D.M. water as vapour venting in feed tank is avoided** so load on DM plant thereby raw water consumption & chemical load decreases.

- **Steam saving**: Negligible steam requirement in De-aerator as high temperature condensate directly pumped to De-aerator & less quantity of low temperature D.M. water.

- **Avoids double pumping** of condensate transfer.
STEAM SAVING IN PROCESS
DIRECT CONTACT JUICE HEATER

Can operate at lower Δ T 2-3°C, so 2nd effect vapour is used for sulphited juice 2nd heating to heating up to 104°C and clear juice heating.

Dilution due to water addition in direct contact heater, reduced Brix of sulphited juice so higher settling rate of mud is achieved in settler/clarifier. (The juice Brix are higher due to high sugar recovery)
STEAM SAVING IN PROCESS
COND. FLASH HEAT RECOVERY

• Normally hot condensate is vented out to atmosphere from over head tank, which is loss of water as well as loss of energy.

• Hot condensate of different temperature recovered from evaporation, juice heating and pan boiling is sent to common condensate flash recovery system and flash vapour is used in evaporator bodies corresponding to their vapour/temperature.

• About 2.0-2.5 % steam reduction due to utilisation of flash vapour at evaporator.
STEAM SAVING IN PROCESS
COND. FLASH HEAT RECOVERY

3D Model of Common Condensate
flash recovery system
STEAM SAVING IN PROCESS
CONTINUOUS VACUUM PAN

• Vapour requirement at pan station has been reduced to 18% on cane by introducing a specially designed continuous pan, common for B & C massecuite boiling. This pan has multiple vapour entry so that same vapour pressure can be maintained throughout the calandria.

• Vapour at two different pressure (1.55 and 1.05 bar) is used for low grade massecuite boiling without effecting crystal growth.
STEAM SAVING IN PROCESS
CONTINUOUS VACUUM PAN

MASSECUITE FLOW INDICATIVE DRAWING FOR COMMON CONTI. PAN.
STEAM SAVING IN PROCESS
CONTINUOUS VACUUM PAN
WORKING RESULTS OF 2014-15 & 2015-16

<table>
<thead>
<tr>
<th>Week</th>
<th>Cane crushed (t)</th>
<th>Bagasse moisture (%)</th>
<th>Process steam % cane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feb-15</td>
<td>Jan-16</td>
<td>Feb-15</td>
</tr>
<tr>
<td>Week-1</td>
<td>4522</td>
<td>5568</td>
<td>48.9</td>
</tr>
<tr>
<td>Week-2</td>
<td>4678</td>
<td>5700</td>
<td>48.8</td>
</tr>
<tr>
<td>Week-3</td>
<td>4655</td>
<td>5476</td>
<td>48.9</td>
</tr>
<tr>
<td>Week-4</td>
<td>4459</td>
<td>5756</td>
<td>48.9</td>
</tr>
<tr>
<td>Week-5</td>
<td>--</td>
<td>5710</td>
<td>--</td>
</tr>
<tr>
<td>Average</td>
<td>4578</td>
<td>5718*</td>
<td>48.9</td>
</tr>
</tbody>
</table>

Note: Week-5 data is not available.
After successful trial season 2014-15, few balancing equipment we added only in the process house, to enhance crush rate to 5500 TCD

Plant achieved season average Reduced mill extraction of 96.89% in 2014-15 and 96.6 % in 2015-16, which is the one of the best efficiency from a 4 mill tandem. Power consumption of the mill section was only 11.5-11.8 kW/T of cane.
CO-GENERATION PLANT: SELECTION OF POWER CYCLE

• Thermodynamically, the energy recovery from the Rankin cycle depends upon the steam temperature, but any increase in steam temperature must be accompanied by an increase in steam pressure to ensure optimum extraction of useful energy from the working medium.

• We selected 110 bar cycle as its power generation potential is about 33% more than 45 bar cycle.
CO-GENERATION PLANT: SELECTION OF POWER CYCLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>45bar/440°C</th>
<th>66bar/485°C</th>
<th>87bar/515°C</th>
<th>110 bar/540°C</th>
<th>125bar/548°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed water temperature</td>
<td>°C</td>
<td>105 (without HP heater)</td>
<td>150 (with 1 HP heater)</td>
<td>170 (with 1 HP heater)</td>
<td>220 (with 2 HP heater)</td>
<td>240 (with 3 HP heater)</td>
</tr>
<tr>
<td>Steam/fuel ratio</td>
<td>-</td>
<td>2.29</td>
<td>2.39</td>
<td>2.42</td>
<td>2.59</td>
<td>2.68</td>
</tr>
<tr>
<td>Steam parameters at turbine inlet</td>
<td>bar/°C</td>
<td>42 / 435</td>
<td>63 / 480</td>
<td>84 / 510</td>
<td>107 / 535</td>
<td>122 / 543</td>
</tr>
<tr>
<td>Gross power output *</td>
<td>MW</td>
<td>22.3</td>
<td>23.2</td>
<td>25.6</td>
<td>27.0</td>
<td>27.8</td>
</tr>
<tr>
<td>Specific steam consumption</td>
<td>kg/kW</td>
<td>4.5</td>
<td>4.3</td>
<td>3.9</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Plant efficiency</td>
<td>%</td>
<td>19.4</td>
<td>21.0</td>
<td>23.5</td>
<td>26.5</td>
<td>28.3</td>
</tr>
</tbody>
</table>

For 100 TPH steam and 0.1 bar 100 % condensing turbine
CO-GENERATION PLANT: SELECTION OF POWER CYCLE

Power generation / Ton of baggase

- 0% at 45 bar
- 11.40% at 67 bar
- 21.40% at 87 bar
- 33% at 110 bar
- 36% at 125 bar
CO-GENERATION PLANT: SELECTION OF BOILER DESIGN

• Travelling grate boiler has much better results on burning of bagasse as well as variety of biomass fuels and fossil fuels.

• The boiler is equipped with environmentally friendly electrostatic precipitators for limiting particulate emission, and a closed and energy-efficient dense-phase fly-ash handling system.

• Adoption of lower flue gas velocities across heating surfaces reduces draft losses, hence reduce ID, FD & SA fan power consumption.
In year 2015-16, the sugar plant operated for 158 days and the co-generation plant operated for a further period of 50 days using saved bagasse as fuel.
STEAM GENERATION PLANT
POWER TURBINE
POWER SAVING: USE OF VARIABLE FREQUENCY DRIVE

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable frequency drives installed in mill, process & co-gen plant)</td>
<td>53 nos.</td>
</tr>
<tr>
<td>Load for operating motors</td>
<td>6056 kW</td>
</tr>
<tr>
<td>Load for standby motors</td>
<td>1120 kW</td>
</tr>
<tr>
<td>Total Load</td>
<td>7176 kW</td>
</tr>
<tr>
<td>Running load of motor without VFD</td>
<td>4481 kW</td>
</tr>
<tr>
<td>% consumption of connected load</td>
<td>75%</td>
</tr>
<tr>
<td>Actual running load of motor with VFD</td>
<td>4056 kW</td>
</tr>
<tr>
<td>% consumption of connected load</td>
<td>67%</td>
</tr>
<tr>
<td>Power saving</td>
<td>425 kW</td>
</tr>
</tbody>
</table>
RESULTS: POWER EXPORT

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>2014-15 Value</th>
<th>2015-16 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cane crushed</td>
<td>t</td>
<td>477,000</td>
<td>8,00,057</td>
</tr>
<tr>
<td>Bagasse % cane</td>
<td>%</td>
<td>28</td>
<td>28.5</td>
</tr>
<tr>
<td>Steam consumption</td>
<td>%</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>Moisture of bagasse</td>
<td>%</td>
<td>48-49</td>
<td>48-49</td>
</tr>
<tr>
<td>Feed water temperature</td>
<td>°C</td>
<td>210-220</td>
<td>210-220</td>
</tr>
<tr>
<td>Steam temperature</td>
<td>°C</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td>Steam pressure</td>
<td>bar</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Season days</td>
<td></td>
<td>122</td>
<td>158</td>
</tr>
<tr>
<td>Bagasse saved (during harvest)</td>
<td>t</td>
<td>7000</td>
<td>39,850</td>
</tr>
</tbody>
</table>
RESULTS: POWER EXPORT

POWER EXPORT IN THE HARVEST

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>2014-15</th>
<th>2015-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power generation in the harvest</td>
<td>kWh</td>
<td>61,900,000</td>
<td>81,886,960</td>
</tr>
<tr>
<td>Power required for sugar + co-gen plant & other facilities</td>
<td>kWh</td>
<td>16,529,000</td>
<td>24,375,250</td>
</tr>
<tr>
<td>Power export to Grid</td>
<td>kWh</td>
<td>45,371,000</td>
<td>57,511,710</td>
</tr>
</tbody>
</table>

POWER EXPORT IN THE OFF–SEASON

<table>
<thead>
<tr>
<th>Parameters</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of days</td>
<td>days</td>
<td>7</td>
</tr>
<tr>
<td>Power generation in the off- season</td>
<td>kWh</td>
<td>3,445,000</td>
</tr>
<tr>
<td>Auxiliary power consumption</td>
<td>kWh</td>
<td>310,000</td>
</tr>
<tr>
<td>Power export in the off-season</td>
<td>kWh</td>
<td>3,135,000</td>
</tr>
</tbody>
</table>
RESULTS: POWER EXPORT

POWER EXPORT PER TONNE OF CANE

<table>
<thead>
<tr>
<th></th>
<th>2014-15</th>
<th>2015-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total power export (during the harvest + off-season)</td>
<td>kWh</td>
<td>48,506,000</td>
</tr>
<tr>
<td>Total cane crushed</td>
<td>tonne</td>
<td>477,000</td>
</tr>
<tr>
<td>Power export</td>
<td>kWh/t</td>
<td>101.60</td>
</tr>
</tbody>
</table>

www.isgec.com

Slide 41
CONCLUSION

• Higher efficiencies (RME > 96.5%) with low speed milling cane be achieved with proper integration and selection of equipment.

• Steam consumption less than 31% on cane while maintaining high process efficiency (RBHR > 91%).

• 29% on cane steam consumption is also achieved for many days during the crop 2015-16.

• More than 100 kW per tonne of cane, power export has been achieved along with high efficiency and throughput from well designed sugar complex.
ACKNOWLEDGEMENT

We are sincerely thankful to Isgec Heavy Engineering Limited and its team for whole-hearted support during the establishment of the project and the operation of the plant.

We are also thankful to our technical team for their dedication to operate plant with highest efficiencies.
Thank You