

FE17 Presentation @ ISSCT Congress Sao Paulo, Brazil

Innovative Energy Efficient Milling Train

Speaker

D.K. Goel

Isgec Heavy Engineering Ltd.

27 June 2013

Authors

D. K. Goel

Advisor

Sugar Machinery Division
Isgec Heavy Engineering Ltd, Noida, India
dkgoel@isgec.co.in

and

J. K. Kharbanda

Design Head Sugar Machinery Division Isgec Heavy Engineering Ltd, Noida, India

Background

- Milling accounts for 50% of the total power consumption in a Sugar Plant.
- Co-generation demands energy efficient milling
- We have innovated design of mills with a view to
 - Improve extraction efficiency
 - ✓ Reduce
 - □ Investment
 - Energy consumption
 - ☐ Maintenance cost

Isgec Innovation: Pinionless Mill

> Feature:

☐ Individual drive for each bottom and top roll, without using crown pinions

Isgec Innovation: Pinionless Mill......

- Advantages
 - ✓ Higher extraction efficiency, due to:
 - ☐ Free float of top roll
 - Operation of top and bottom rolls at differential speed
 - √ Smaller foot prints
 - ☐ 50% saving in cost of civil works

Isgec Innovation: Pinionless Mill.....

- Advantages...
 - ✓ Lower friction losses:
 - □ 15% Reduction in energy consumption
 - Substantial reduction in wear and tear of mill components
 - □ 15% reduction in consumption of lubricant
 - √ Lesser risk of mill chokes

Pinionless Mill: Drive Options

- > Types of Drive:
 - Variable speed AC electric motor
 - Variable flow hydraulic motor
- Drive mounting configurations:
 - Individual shaft mounted drives,
 - 2 on top roll, 1 each on bottom roll
 - Assist drives
 - Foot mounted for top roll,
 - Shaft mounted, 1 each on bottom roll

Ease of Maintenance: Inter Carrier

Swiveling Rake Inter Carrier: Addax, Sierra Leone

Ease of Maintenance: Drive sprocket

Cane Carrier head shaft:

Sprocket with girth type bolted teeth

Ease of Maintenance: Inclined Set Mill

45" x 90" Mill: Xinavane, Mozambique

Pinionless Mill: Design Methodology

- Preparation of 3-D model of mill with drive
- Computation of forces on 42" x 84" head stock and top bearing for 340 tons cane / hr at 3.5 rpm
- Finite Element Analysis of head stock assembly
- Evaluation of stresses on top roll assembly

Strengthened the head stock and roll shaft in high stress areas, while optimizing overall weight

Pinionless Mill: 3D Model

42" x 84", 4 Roll Mill: Jay Mahesh Sugar, India

Radial Force Comparison: Top Bearing

Conventional Mill

Pinionless Mill

Horizontal force on top bearing of Pinionless mill is 40% lower

Stress Comparison: Head Stock

Stress Comparison: Top Roll

Stress Diagram: Top Roll Assembly

Stress Comparison: Summary

Mill	Max Stress	Stress Reduction	
Component	Conventional Mill	Pinionless Mill	Reduction
Headstock	2634	1728	35 %
Top Bearing Housing	1213	863	29 %
Top Roll Shaft	1248	610	51 %

Drive Efficiency Comparison: Summary

Drive Equipment	Conventional Mill	Pinionless Mill		
		Hydraulic	Planetary	
		Drive	Gear Box	
Hydraulic Motor with Power Pack	Not Applicable	78	Not Applicable	
AC Motor with VFD	94	Not Applicable	94	
Planetary Gear Box	95	Not Required	90	
Tail Bar	98	Not Required	Not Required	
Mill Crown Pinions	92	Not Required	Not Required	
Total Efficiency	80.5 %	78 %	84.6 %	

Pinionless Mill: Commercial Installations

- ➤ 42"x84", 4 roll Pinionless mill, with individual shaft mounted planetary drive, Jay Mahesh, India
 - ☐ 1st Mill commissioned in Feb, 2008
 - ☐ Two repeat orders
 - ☐ Full fledged milling train since Oct, 2010
- ➤ 45"x90", 4 roll Pinionless mill, with assist drives at Santa Ana, Guatemala.
 - ☐ Commissioning: May, 2014

Pinionless Mills: Jay Mahesh, India

Success Story at Jay Mahesh, India

Operating results:

- ☐ Crush Rate: 250 tons / hr
- Energy Consumption: Only 1.1 kWh/ton cane/mill
- □ Reduced Extraction: 96+ with 3 mills in operation
- Bagasse moisture: 49% with 3 mills in operation
- Negligible wear on mill roll journals and bearing liners even after completion of 4 crops

Pinionless Mill: Assist Drive System

45" x 90", 4 Roll Mill: Santa Ana, Guatemala

Innovative Efficient Milling Train

Configuration:

- Single preparatory device, whole stick shredder
 - √ 92 PI, operating at 94 m/sec tip speed
 - ✓ Smaller foot print of cane preparation system
- 4 nos Pinionless mills with individual AC VFD
 - √ 15% reduction in energy consumption
 - ✓ Smaller foot prints of milling tandem
- Swiveling type rake inter carrier

Innovative Efficient Milling Train....

Advantages

- ❖ 50% lower cost of foundations and building
- Higher extraction efficiency
- Higher energy efficiency
- Ease of maintenance

This milling train consumes only 12 kWh/ton cane

Tandem Size: Crushing Vs Efficiency

Sr.	Mill Size	e Tandem Size				
no.		3 Mill	4 Mill	5 Mill	6 Mill	
1	42"x84", 4 Roll					
1.1	Crush rate (tons / hr)	250	350	500	600	
1.2	Roll Speed (RPM)	2.5	3.5	5.0	6.0	
3	Reduced Extraction	96.0	96.5	96.5	97.0	
2	45"x90", 4 Roll					
2.1	Crush rate (tons / hr)	400	500	650	750	
2.2	Roll Speed (RPM)	3.0	4.0	5.0	6.0	
2.3	Reduced Extraction	96.0	96.5	96.5	97.0	

Conclusions

- Pinionless mill consistently delivers:
 - Higher extraction efficiency
 - ✓ Higher energy efficiency
 - ✓ Flexibility in through put
 - ✓ Longer life of components

Conclusions.....

- ➤ Pinionless mill with shaft mounted planetary gear boxes has higher transmission efficiency and lower capital cost Vs Hydraulic drive
- ➤ Pinionless Mills with shaft mounted planetary gearboxes working satisfactorily for 4 years
- Innovative Milling Train is 10% cheaper and consumes only 12 kWh per ton of cane

Thank You Gracias Obrigado

Isgec Heavy Engineering Limited www.isgec.com